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Abstract—We describe an algorithm to estimate the pose of
a generic articulated object. Our algorithm takes as input a
description of the object and a potentially incomplete series of
observations; it outputs an on-line estimate of the object’s config-
uration. This task is challenging because: (1) the distribution of
object states is often multi-modal; (2) the object is not assumed
to be under our control, limiting our ability to predict its motion;
and (3) rotational joints make the state space highly non-linear.

The proposed method represents three principal contributions
to address these challenges. First, we use a particle filter
implementation which is unique in that it does not require
a reliable state transition model. Instead, the method relies
primarily on observations during particle proposal, using the
state transition model only at singularities. Second, our particle
filter formulation explicitly handles missing observations via a
novel proposal mechanism. Although existing particle filters can
handle missing observations, they do so only by relying on good
state transition models. Finally, our method evaluates noise in
the observation space, rather than state space. This reduces the
variability in performance due to choice of parametrization, and
effectively handles non-linearities caused by rotational joints.

We compare our method to a baseline implementation without
these techniques and demonstrate, for a fixed error, more than
an order-of-magnitude reduction in the number of required
particles, an increase in the number of effective particles, and an
increase in frame rate. Source code for the method is available
at [URL omitted for anonymous review].

I. INTRODUCTION

To be useful in human-constructed environments, robots
must interact with objects which have internal degrees of
freedom (DOFs) or are constrained with respect to the
environment. Such articulated mechanisms are found in
homes (e.g., cabinet drawers, appliance doors, faucet han-
dles, toaster levers, corkscrews, lidded boxes) and workplaces
(e.g., construction equipment, pliers, screwdrivers, clamps,
swivel chairs). Accurate estimates of the internal DOFs of
such objects would facilitate manipulating or avoiding them.
Knowledge of the state of an excavator, for example, would
aid a robot navigating alongside it.

Our method takes as input:

1) A kinematic model of the articulated object, includ-
ing: a function mapping joint values to observations
(the “forward kinematics”); a function mapping small
changes in configuration space to small changes in the
observation space (the “Jacobian”); and any joint limits.
In our application, this model is specified via a URDF
file [17].

Fig. 1: The goal is to estimate the joint values and base pose
of an articulated object, e.g. an excavator. In this case, links
are tracked in an image stream (dots at left); recovering the
joint values enables 3D reconstruction (right).

2) A series of observations, sufficient for system observ-
ability (i.e. with sufficient information to estimate the
object’s configuration with finite variance). Observations
may be noisy or incomplete, i.e., not included in each
sensor update.

The filter estimates the pose of one link (the “base pose”) and
the value of each joint parameter. In the excavator example
(see Fig. 1), we might have independent feature detectors
recovering pixel locations of the tracks, operator cab, boom,
stick, and bucket. Of course, since these pixel measurements
are not independent, the kinematic model can be used to
improve the estimates.

In § II, we discuss related work and several alternative
solutions to this tracking task. Of these alternative solutions,
a “typical” implementation of a particle filter is discussed,
along with several of its shortcomings, in § III. § IV details
our proposed solution, and § V demonstrates it on household
dishwasher, PR2 robot, and construction-site excavator exam-
ples.

II. BACKGROUND

A. Model estimation

We assume that a kinematic model of the object is available.
Sources could include an object database, user input, or some
prior estimation process. Sturm [13] and Katz [11] demonstrate
a prior estimation process, recovering the kinematic model of
an unknown object while observing and/or manipulating it.
These methods might be used to estimate the kinematic model
of an object and provide input to our system.



B. Articulated object tracking

Much of the research in articulated object tracking is
focused on tracking the human body: Deutscher [3], Urtasun
[15], Ziegler [18], Cabido [1], and Gall [5]. These methods
handle a specific kind of input (e.g., video only) or attempt
to learn motion models to improve performance. By contrast,
our technique is not specific to a particular kinematic model
or kind of input. Additionally, we handle settings in which
motion is not easily predicted.

To address the multi-modal nature of articulated tracking,
Hauberg [7] also uses a particle filter for tracking humans.
Similar to our approach, they consider a manifold of valid
kinematic configurations. Proposing from the state transition
model in this manifold yielded good results in their appli-
cation; lacking a good state transition model, we propose in
the manifold using observations. They also neglect manifold
singularities, which we specifically address.

The only articulated tracking work validated on several
different kinematic objects, of which we are aware, is by
Comport [2]. Comport tracks an articulated object by optimiz-
ing a single hypothesis at each time step. Their technique is
specific to image detections and, as it maintains a single greedy
hypothesis, will be subject to local minima. Additionally, their
method assumes all links are observed at all times.

C. Alternate solutions

To motivate our method, we consider several alternative
solutions and discuss their shortcomings. Given that we have
observations and a kinematic model, one possible solution
is to simply optimize over configurations at each time step.
This simple technique exhibits several shortcomings: (1) the
system may have multiple solutions which cannot be modeled
by optimization; (2) no estimate of uncertainty is provided; and
(3) joint limits are supported only by adding constraints. The
multi-modal nature of the problem is particularly problematic.
Multiple solutions arise from redundancies in the kinematics
and incomplete observations which do not fully constrain each
link.

The Unscented Kalman Filter (UKF) [9] can be used to
address some of these issues. As a filter, it can leverage
historical data to avoid some local minima and provides an
estimate of uncertainty. The UKF can also be augmented [12]
to handle joint limits. However, because the UKF can only
model a unimodal distribution, its applicability in our domain
is limited.

Many other particle filter formulations exist, in addition
to the baseline method discussed later. Doucet [4] and
Merwe [16], for example, apply an Extended Kalman Fil-
ter (EKF) and UKF (respectively) to each particle in the
filter. Their formulations expand the state space for each
particle, maintaining additional covariance parameters. The
EKF approach is similar in spirit to our Jacobian tangent
space; on the other hand, our formulation does require a
Gaussian approximation or require that a separate covariance
be maintained for each particle.

D. Particle filters

A particle filter [8] maintains a discrete approximation to a
probability distribution using a collection of state hypotheses,
or particles. During each cycle of the filter, particles are pro-
posed, weighted, and possibly duplicated/eliminated. During
the proposal phase, the ideal proposal distribution, or optimal
importance function (OIF) [4], is p(xk

∣∣∣x(i)
k−1, zk ). In other

words, the probability of a new state, xk, depends on the i-th
previous particle’s state, x(i)

k−1, and the new observation, zk.
Using Bayes rule, it can be shown that:
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where p (zk|xk) corresponds to the observation model and
p(xk|x(i)

k−1) corresponds to the state transition model. The
denominator, p(zk|x(i)

k−1), is the probability of the observation,
given the previous state. In general we will not know this
quantity, but can marginalize over the current state:

p
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Note that the two terms in the integral are analogous to the two
terms in the numerator of Eq. 1 and can be readily calculated.
Doucet [4] also notes that the weight update for the OIF is:

w
(i)
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(i)
k−1 · p
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zk|x(i)

k−1

)
(3)

It is often impossible to sample directly from the OIF. As
a result, the particle filter samples from an approximation and
uses an importance weight to compensate. It is important that
the approximation yield particles from the high-probability
regions of the OIF. To achieve this, one of two approximations
is often made:

1) When the state transition model is more accurate than
the observations, we can approximate that xk⊥zk, i.e.,
that for the purposes of proposal, the state is indepen-
dent of the observations. The OIF then conveniently
becomes the familiar p(xk|x(i)

k−1), i.e., the state transition
model. The weight update then becomes w

(i)
k = w

(i)
k−1 ·

p (zk|xk) [14].
2) When the observation model is more accurate than

the state transition model, we can approximate that
xk⊥x(i)

k−1, and propose particles based only on obser-
vations. In this case, the OIF becomes p (xk|zk). This
proposal function is often complex, requiring estimation
of a state from observations (e.g., via inverse kinemat-
ics). However, this choice enables the incorporation of
observations during particle proposal.

The first approximation (1) is most typical, as it produces
simple equations. However, because it relies only on the
state transition model to propose particles, the next generation
of particles is only as good as that model. In our case,
a state transition model specific to the articulated object is



unavailable, and we rely on generic zero-velocity and constant-
velocity models. These models are relatively poor and result
in particles with low observational probability.

Instead, our solution incorporates observations during par-
ticle proposal (2). Grisetti [6] successfully demonstrated such
an approach for a mapping task. The state transition model
for the robot’s motion was often noisier than the sensor data,
so the method used LIDAR observations, processed through a
scan-matcher, to propose new particles. The result was that
generated particles had higher probability and, thus, fewer
particles were required. We adopt the same approach here, but
do not require a function to convert directly from observations
to an object configuration (i.e., we do not require a scan-
matcher or equivalent).

III. BASELINE IMPLEMENTATION

As a basis for comparison, we develop a “baseline” method
which uses the typical particle filter formulation (approxi-
mation (1) above). We expect that this technique will have
difficulty – motivating our method – because its state transition
model is not well-tailored to the object’s motion.

When limited to AGN models, as in our case for the zero-
and constant-velocity models, the baseline method exhibits
an additional problem: the rotational joints result in a highly
non-linear state space which, if ignored, can produce unlikely
particles and result in wasted computation.

To see this, suppose we wish to track the simple 2D
kinematic linkage shown in Fig. 3. Consider adding a small
noise value to each joint, represented in the state. It is clear
that adding a small rotational value to the joint at p2 will result
in a relatively large movement of the link at p4.

Such an experiment is repeated many times and the resulting
link positions are shown in Fig. 3. Here, p1 (blue) was chosen
as the base link, and rotational noise accumulates, causing a
wide banana-like dispersion of the fourth link (magenta). This
is problematic because the fourth link’s position is unlikely
according to the observations (the observation density is rep-
resented by the underlying contours). In practice, this means
that a particle’s distal link may be far from the observations,
receive a low weight, and result in wasted computation on an
unlikely hypothesis.

In the next section, we will address this issue by proposing
particles with noise in the observation space, rather than the
state space. This will produce configurations which correspond
more closely to the observational contours.

IV. OUR PARTICLE PROPOSAL METHOD

During particle proposal, the algorithm considers the valid
configurations of the articulated object as a manifold M in
a higher-dimensional space. We chose this high-dimensional
space to be the observation space so that proposed particles
correspond to observation noise and because this space is
fixed in our application. The manifold is defined by the
forward kinematics and observation function, f(x), which
converts from an M × 1 state vector, x, to a point in the
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Fig. 2: An example 2D articulated system with four rigid links
and three revolute joints.
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Fig. 3: The dots show the link positions of the particles
proposed from p(xk|x(i)

k−1) for links 1-4 (respectively blue,
red, green, magenta). The underlying contours illustrate the
Gaussian p (zk|xk). Notice that for link 4, for example, many
particles are unlikely.

higher dimensional space. A complete observation z is an N -
dimensional point in the observation space. (We assume our
system is observable, i.e., N ≥M .)

Our method proceeds by:
1) Using available observations, zk, to find the nearest valid

configuration/state (i.e., the closest point on M).
2) Approximating the OIF (Eq. 1) using a set X (i) of

discrete samples, generated by:
a) Adding noise in the observation (not state) space,

then using a first-order Taylor approximation and
projection to map the noise to the state space,

b) Adding noise in the state space only when the
Jacobian is singular, and

c) Rejection sampling to satisfy joint limits.
As a result of (1), we can exploit observations during the

proposal stage without requiring an inverse kinematic function.
As we will see, we can extract information from observations
which are either redundant (dim(zk) > M ) or incomplete
(dim(zk) < M ). As a result of (2a), the particle proposals are
less dependent on the state parametrization, because particle
perturbations are created in the fixed observation space. At-
tribute (2b) handles degenerate observations by relying on the



state transition model. In (2c), we ensure that joint limits are
satisfied. Because rejection sampling can be expensive, we
sample directly from the discrete approximation X (i) when
choosing x

(i)
k (rather than re-approximating with a Gaussian,

as in [6]).
Because the algorithm is not provided with a state transition

model, we select a model which will generalize to many
different kinematic chains. In all our examples, we found a
zero-velocity model sufficient. That is, we use the state transi-
tion model P (xk|xk−1) ∼ N (xk−1,Σx). If another transition
model were more appropriate, e.g., a constant-velocity model,
the following techniques could be easily modified by adding
the constant velocity, in addition to diffusion noise, in the null
space.

A. Updating with the current observations

The algorithm begins by considering each particle from
the previous time step, x

(i)
k−1. For notational simplicity, let

x = x
(i)
k−1. We wish to update this particle using what-

ever observations are available. Thus, we find a new point
mk which is both near the previous particle and near the
observations: mk = x + d̂x. Here, d̂x is a small change
in the state space and we wish to find it by minimizing
the Mahalanobis distance between the observation and the
configuration manifold. Further, the observations, zk, may be
incomplete; let Q be a N×N diagonal matrix whose diagonal
entries are 1 if the observation is made at time k and zero
otherwise (i.e. Q selects the valid observations). Then

d̂x = argmin
dx

[Qzk −Qf (x + dx)]
T

Σ−1obs

· [Qzk −Qf (x + dx)]
(4)

where Σobs is the covariance of the observations. Let LTL =
Σ−1obs be the Cholesky factorization of Σ−1obs. Then

d̂x = argmin
dx

[Qzk −Qf (x + dx)]
T
LTL

· [Qzk −Qf (x + dx)] (5)

= argmin
dx

|LQzk − LQf (x + dx)|2 (6)

The algorithm then finds the nearest point on the manifold
by projecting onto a tangent plane (Fig. 4). We assume that
M is well-approximated by a first-order Taylor series in a
neighborhood corresponding to the observation noise:

f (x + dx) = f (x) + Jx · dx (7)

We also note that zk = f (x) + dz, where dz is the vector
between the previous particle and the current observation.

d̂x = argmin
dx

|LQf (x) + LQdz − LQf (x)− LQJx dx|2

= argmin
dx

|LQdz − LQ Jx dx|2 (8)

The pseudo-inverse, (·)†, solves this problem:

d̂x = (LQJx)
†
LQ dz (9)

Fig. 4: The previous particle x
(i)
k−1 is updated with the obser-

vations zk using a Taylor approximation and projection.

Fig. 5: A Taylor approximation and projection relate noise in
observation space to noise in state space.

Substituting back into the equation for mk:

mk = x + (LQJx)
†
LQ dz (10)

= x
(i)
k−1 + (LQJx)

†
LQ

(
zk − f

(
x
(i)
k−1

))
(11)

The matrix product (LQJx) may be singular due to (1) a
specific configuration or (2) missing observations. In either
situation, there are dimensions of x

(i)
k−1 which are unaltered

in mk (the null space). On the other hand, the dimensions
that lie in the range are updated and “pulled” as close as
possible to the observation. This has the desirable result that
all information is extracted from the observations, while the
unobserved dimensions remain centered at x

(i)
k−1. When zk

has redundant observations and over-constrains x
(i)
k−1, Eq. 11

computes d̂x by projecting onto Jx.

B. Particle proposal

With information from the observations incorporated, the
algorithm creates a set X (i) =

{
X1 · · · XP

}
of points

centered around mk. These P points discretely approximate
the OIF (and thus avoid a Gaussian assumption as in [4, 16])
and are sampled to select x(i)

k , the next generation particle.
Our algorithm proposes noise in the observation space,

rather than the state space. States proposed in this way will
lie closer to the actual observations. Along some dimensions,
however, it may not be possible to convert uncertainty in the



observation space to uncertainty in the state space. This can
occur when the Jacobian is singular due to a specific joint
configuration or missing observations. When this occurs, the
algorithm proposes using state uncertainty in this null space.

As shown in Fig. 5, we sample AGN perturbations from
wj ∼ N (0,Σsys). Σsys is an M ×M matrix which expresses
the uncertainty of the state in the observation space. Again,
using a Taylor approximation:

Xj︸︷︷︸
M×1

= mk︸︷︷︸
M×1

+ J†m︸︷︷︸
M×N

wj︸︷︷︸
N×1

(12)

This equation uses the pseudo-inverse of the Jacobian, Jm,
evaluated at mk, to convert uncertainty in the observation
space to uncertainty in the state space. Then wj is simply
projected onto M to produce the points Xj .
Jm may be singular due to a specific configuration of the

articulated object. In such a case, Xj will equal mk along the
null dimensions of Jm. This is a problem because no noise has
been added along these null dimensions. In other words, wj

does not define a unique change in mk and the pseudo-inverse
extinguishes perturbations along those dimensions.

To see this, consider again the four-link chain shown in
Fig. 6a with all links aligned along the horizontal axis. If
a bearing-only sensor is positioned at (0,−1) looking along
the horizontal axis, the Jacobian is degenerate; the entire
linkage can slide along the horizontal axis without changing
the bearing observations. Using Eq. 12, the particles shown
in Fig. 6b are generated. Note that along the (horizontal)
null dimension, there is no perturbation in the particles for
the leftmost link. Increasingly to the right, there is some
displacement in the horizontal dimension due only to motion
in the constraint manifold. Thus Eq. 12 does not meaningfully
distribute the particles, which is undesirable.

The solution is to use the state transition model to propose
particles in the null space of Jm. In so doing, our method
effectively prioritizes observations over the previous state, but
the previous state can be used when the observations provide
no information. Revising Eq. 12:

Xj = mk + J†m wj +N (Jm )︸ ︷︷ ︸
M×M

vj︸︷︷︸
M×1

(13)

where vj ∼ N(0,Σx) and Σx is the M × M covariance
matrix for the state (as used by the baseline method). The
N (Jm ) = I − J†m Jm matrix is the null space projector
matrix. When using Eq. 13, particles are well distributed even
when singularities exist in the Jacobian.

Our method draws samples from the high-dimensional ob-
servation space and projects them onto a (typically lower-
dimensional) plane tangent to the configuration manifold. The
samples are then transferred onto the manifold itself according
to the Taylor approximation. An alternative could be to sample
directly on the tangent plane, for example from a distribution
suitably constructed from the sigma points [9] of Σsys (Fig. 5).

Although the samples produced by Eq. 13 are guaranteed
to satisfy the kinematic equations (i.e., lie in the manifold),
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(a) A bearing-only sensor (red) observes the four link
kinematic chain. In this configuration, the system is
singular because the chain can be moved along the
horizontal axis without affecting the observations.
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(b) Particles proposed with Eq. 12 have little motion
along the singular dimension.
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(c) Particles proposed with Eq. 13 use the state tran-
sition model to propose along the singular dimension,
improving the sampling when the system is degenerate.

Fig. 6: Sampling at singularities

they may not satisfy the joint limits. As a result, the algorithm
iterates Eq. 13, generating a sample and evaluating it against
the joint limits. Finally, the OIF is evaluated using Eq. 1 and a
discrete version of Eq. 2. Since all Xj’s satisfy the joint limits
and kinematic constraints, we can select x(i)

k by drawing from
X according to the OIF probabilities.

V. EXPERIMENTS

We compared a baseline particle filter and our approach
on a household dishwasher (planar), PR2 robot (3D), and a
construction-site excavator (3D) example. For each system, we
(1) varied the number of particles, (2) performed 100 Monte
Carlo simulations, and (3) evaluated the root mean squared
error (RMSE) of the tracker. The excavator system is multi-
modal, and we also compare the performance of a UKF.

1) Dishwasher: Approximately 1300 frames of RGB-D
data were collected of a dishwasher (see Fig. 7) being opened
and closed. Ground truth and the 6-DOF kinematic model
were established via manual annotation. Three independent
TLD [10] trackers were manually initialized on the door and
drawers, providing pixel observations. (Alternatively, a tracker
could have also been trained offline.) There are periods of
missing observations when the door obscures the drawers or
the TLD loses track. Our algorithm is still able to use these
partial observations during particle proposal, c.f. Eq. 11.

Since only the positions of the dishwasher door and drawer
are available, a singularity exists when the door is closed
(vertical). In this configuration, observation movement in the



Fig. 7: A TLD tracker provided positions of the dishwasher’s
articulated links as input.
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Fig. 8: In addition to lower RMSE, our method demonstrated
less variation in accuracy while tracking the dishwasher, since
it quickly recovered when missing observations resumed.

horizontal direction can be explained both by movement of the
base pose or by a slight opening of the door and movement of
the drawers. The null space term in Eq. 13 is crucial so that
meaningful particles are proposed during the initial frames.

Fig. 8 shows results for the dishwasher and a video is
available at [supplementary material]. In addition to higher
accuracy, our method also exhibits substantially less variation.
This is primarily due to periods when the observations were
insufficient to make the system observable. Both methods
would “wander” during these singularities, each proposing
unconstrained particles in the null space. However, when
observations became available again, our method was able
to quickly recover and begin proposing particles near those
observations. Our Matlab implementation executed at ∼23
FPS, exceeding the 10 FPS rate of the RGB-D data. Finally,
our method maintained ∼50% effective particles, while the
baseline had only about 5%.

2) PR2: In this experiment, we consider a PR2 robot
holding a 60cm PVC pipe, and the goal is to estimate the
pose of the pipe. This task is interesting because PR2 cannot
grip the pipe rigidly due to its weight and length. As a result,
the pipe tends to slip in the gripper; however, this slip occurs
only along certain directions. As suggested in Fig. 9, the pipe
may translate in the gripper along the pipe’s long axis or along

Fig. 9: The PR2’s grip on the pipe is not rigid, but still
constrains some movement. The system can be modeled as
a 3-DOF kinematic chain.

the grip direction. The pipe can also rotate about the suggested
axis.

We might wish to know the pose of the pipe so that it can
be accurately manipulated — when, for example, inserting
into a mating coupling. An obvious solution might be to track
the pipe in RGB-D data using a RANSAC cylinder fit. A
complication with this approach, however, is that the absolute
pose of the pipe is not observable. Rotation about the pipe’s
long axis cannot be observed due to its rotational symmetry.
Thus, even recovering a relative pose of the pipe is not possible
by observing only the pipe itself.

Although the gripper does not hold the pipe rigidly along
all six DOFs, it does provide rigid support along three DOFs.
Thus, 6-DOF information from the pose of the gripper (as
provided by the PR2’s telemetry and forward kinematics) and
4-DOF information about the partial pose of the pipe (as
provided by a RANSAC cylinder fit on RGB-D data) can
be combined to track the pipe in 6-DOF. (We do not track
the absolute orientation of the pipe about the long axis; this
rotation is tracked relative to the initial orientation.) It is clear
that the RANSAC estimate of the pipe’s location will have
errors; but the pose of the gripper is also subject to errors.
Mechanical slop, imperfect PR2 models, and errors in the
Kinect calibration all lead to errors in the Kinect-to-gripper
transform.

We achieve the pipe tracking by explicitly modeling the
DOFs between the gripper and the pipe. As shown in Fig. 9,
the system can be modeled as a 6-DOF pose of the gripper
and a kinematic chain with three joints (two prismatic and one
rotational). The scenario in Fig. 10 demonstrates significant
pipe rotation in the gripper as the gripper rotates. Velocity
spikes correspond to events when the pipe passed a vertical
orientation and “fell” (or, more accurately, slipped) in the grip-
per. During these two events, the pipe moved over 90 degrees
in just 2-3 frames, during which time the state transition model
fit the data particularly badly.

Fig. 11 shows the RMSE and number of effective particles
for the PR2 experiment. Using only around 20 particles, our
method achieves error levels lower than those achieved by
the baseline method with up to 500 particles. Our method
also achieves a higher Neff indicating that the particles it does
produce lie in higher-probability regions.



0 10 20 30 40 50 60 70
−6

−4

−2

0

2

4

6

Time (sec)

Y
−

ax
is

 r
ot

at
io

n 
ra

te
 (

ra
d/

se
c)

Fig. 10: In this sequence, the PR2 rotates the pipe. The top
image shows the pipe poses color coded by time; the gripper
rotates the pipe, moving it through red-yellow-blue poses. The
bottom plot shows rotational velocity; two large velocity spikes
correspond to times when the pipe underwent significant slip
in the gripper.
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Fig. 11: RMSE and number of effective particle performance
for the PR2 sequence in Fig. 10 are shown.

Fig. 12: The excavator loads a dump truck three times.
Viewed from above, this graphic shows the entire 1645-frame
sequence, color coded by time. The three loads correspond to
blue, yellow, and red, in that order.

3) Excavator: We also visited the Heavy Construction
Academy (HCA) in Brentwood, NH and observed an excavator
operating. We collected data with a PointGrey CMLN-13S2C
camera and Velodyne HDL-32E 3D LIDAR. (Velodyne data
was used only for manually establishing ground truth.)

The excavator was a Caterpillar model CAT322BL, with a
tracked base and rotating cab/engine; its heavy lift arm consists
of three links. We constructed a URDF of the CAT322BL
excavator from third-party datasheets. The datasheets were
not complete, but provided enough information to make a
reasonably accurate model.

The image-based observations were made using seven inde-
pendent TLD trackers. The trackers were manually initialized
during the first frame on the points shown in Fig. 1. The pixel
observations included two points on the tracks, two points on
the cab (the point on the back of the cab is not visible in this
frame), a point on the boom, a point on the stick, and a point
on the bucket. Each of the pixel observations defines a ray
in 3D space (see Fig. 13), corresponding to two constraints,
and is used to estimate the 10-DOF state of the excavator (six
DOFs for the base pose and four arm joints). Fig. 12 shows the
ground-truth path executed by the excavator for one scenario.

The pixel observations do not completely define the link
locations. Combined with the internal DOFs, the excavator
can “slide” along the rays; thus many configurations explain
the observations, as shown in Fig. 15. This multi-modal
distribution of configurations motivates our use of the particle
filter.

From Fig. 14, we can draw several conclusions. First,
our method exhibits a lower RMSE than the UKF. This is
because the excavator kinematics and observation pixels/rays
result in a multi-modal distribution, and the UKF periodically
tracks the wrong mode. Second, the constant-velocity model
did not improve performance for the UKF or baseline. This
highlights the difficulty in creating a good state transition
model: although we might expect a higher order model to
perform better, it fails here because the excavator’s motion is



Fig. 13: Each pixel observation defines a ray observation in
3D space, emanating from the camera origin.
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Fig. 14: Our method demonstrated lower RMSE with fewer
particles than the UKF and the baseline particle filter. A video
of the comparison is available at [supplementary material].

Fig. 15: Shown from above, the observations (colored rays)
are generated by the actual configuration of the excavator
(gray). Each colored ray intersects the excavator at the same
colored point in Fig. 1. Other configurations (purple) explain
the observations as well as the true configuration.

sufficiently irregular and the frame rate sufficiently low that
constant velocity is inappropriate. Third, the baseline method
requires 100 times as many particles as our method – and runs
roughly 8 times slower than our method – to achieve the same
RMSE.

A. Frame rate
We have demonstrated at least an order-of-magnitude re-

duction in the number of required particles to track at similar
levels of RMS error. This enables a corresponding increase
in our method’s frame rate. Fig. 16 compares frame rates
for the dishwasher, PR2, and excavator examples. In each
case, our method was 4 to 8 times faster than the baseline
method for comparable RMS error. Since the frame rate of
the particle filter is linearly proportional to the number of
particles, we might have expected a factor of 10 improvement.
The algorithm did not reach this level, however, because of the
discrete approximation required to calculate particle weights.
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Fig. 16: The improved particle generation in our method
resulted in a factor of 4-8 speed up over the baseline method.
Results were generated on a 3.4 GHz processor running
Matlab 2013.

VI. CONCLUSION

We give an algorithm that augments observations with a
model describing the constraints between them. It estimates the
joint positions of an articulated object, under assumptions that
the configuration manifold is locally planar, relative to the state
and observation uncertainty. The algorithm does not rely solely
on the state transition model during proposal and, instead,
incorporates observations. It proposes noise in observation
space, and incorporates an estimator that is independent of
state parametrization. We demonstrate more than an order-of-
magnitude reduction in the number of particles over a baseline
implementation, and a corresponding increase in frame rate.
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