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Fig. 1: Multi-Robot System test environments with Mixed-Reality interfaces with varied realism of human behavior. Virtual components are
illustrated in blue (best viewed in color): (a) Fully simulated environment, (b-e) human characters are controlled by real humans (via (b)
console-based Virtual Reality (VR) interfaces, (c) immersive VR interfaces, (d) Augmented Reality (AR) interfaces, and (e) VR/AR with
real robots in real environment, and (f) fully real environment.

Abstract—Simulation has been a necessary, safe testbed for
robotics systems (RS). However, testing in simulation alone is
not enough for robotic systems operating in close proximity, or
interacting directly with, humans, because simulated humans
are very limited. Furthermore, testing with real humans can
be unsafe and costly. As recent advances in machine learning
are being brought to physical robotic systems, how to collect
data as well as evaluate them with human interactions safely yet
realistically is a critical question. This paper presents a Mixed-
Reality (MR) system toward human-centered development of
robotic systems emphasizing benefits as a data collection and
testbed tool. MR testbeds allow humans to interact with various
levels of virtuality to maintain both realism and safety. We
detail the advantages and limitations of these different levels of
realism or virtualization, and report our MR-based RS testbed
implemented using off-the-shelf MR devices with the Unity game
engine and ROS. We demonstrate our testbed in a multi-robot,
multi-person tracking and monitoring application. We share our
vision and insights earned during the development and data
collection.

I. INTRODUCTION

Given the increasing adoption of robotic technologies in
diverse areas, we can expect demands to grow for autonomous
robots that can operate alongside humans to perform complex
tasks such as transportation, surveillance, rescue, and disaster
response. Although we have witnessed successful algorithms
to control and operate robots, an open question still remains
when it comes to their interaction with humans [1]. How
can we develop and test robotic systems operating alongside
humans in a safe, yet realistic, environment? Since the ultimate
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use of physical robots would happen in the real world, enabling
them to learn to deal with humans is essential. However, it
is challenging in two aspects. First, operating physical robotic
systems with humans can be unsafe and costly. Second, human
models in simulation are very limited. Even though simulation
is a necessary, safe testbed for complex robotics systems, there
will exist a large gap between development and reality if
simulation is the only tool. Therefore, we need a means to
reduce the disparity before deploying robots in real world.
Efforts are being made to learn safe algorithms [2], but we
still lack a good way to collect data of good realism and
verify safety before deployment. Few studies have provided
a systematic view on this matter.

In this paper, we present a mixed-reality testbed design for
robotic systems as one solution to increase behavioral realism
while safely verifying robotic performance directly using
human input. After reviewing related past work in § II, we
identify and describe the benefits and limitations of using MR
interfaces for different levels of virtualization/realism in § III.
Details of our MR testbed implementation, in both hardware
and software, are provided in § IV. We present experimental
demonstration of the system for example applications of multi-
robot, multi-person tracking and activity detection in § V, and
summarize our approach discussing future directions in § VI.

II. RELATED WORK

Mixed-Reality, referring the virtuality continuum as in [3],
is a broad topic that involves many different technologies
and research fields. We currently experience challenges in
leveraging MR in robotics due to the lack of generic frame-
works and guidelines of MR user interfaces (UI) as well
as limited technologies of MR. Nonetheless, the number of



studies involving “robotics AND (MR or VR or AR)1” has
increased at an exponential rate during the past couple of
decades [4]. As more and more of the technological and UI
challenges are overcome, the integration of MR with robotic
systems is expected to become prevalent. We embrace the
immaturity as a great potential to expand with the synergy
of MR and robotics.

One important aspect of leveraging MR in robotics has
been mediating communication between humans and robotic
systems. It is usually difficult for a person to give direct
commands or parameters in the input space of robotic systems,
especially when the dimension is high (e.g., manipulators
or multiple robots). MR has been considered promising and
enabled intuitive visualization of spatial information for some
time [5]. Various MR systems have been suggested to provide
operators with an easier, higher-level, or multi-modal control
over robot [6–10] compared to simple teleoperation without a
MR component. In development phases, MR overlays of real
and simulated scenes have provided intuitive programming
and debugging environments [11–14]. The effectiveness of
gathering human inputs via MR interfaces are also presented
for human expert demonstrations in the robotic learning do-
main [15–17]. The types of communication are not restricted
to supervisory purposes. More and more collaborative and
interactive forms of MR-based communication have appeared
in Human-Robot Interactions (HRI) studies [18–21].

With growing processing power and easy access to the
off-the-shelf MR interfaces, robotics systems with MR com-
ponents are increasingly common across various stages of
development and deployment [22]. Another noticeable aspect
of the trend is that the use of MR in robotics has been extended
beyond data visualization. Researchers have suggested ideas
for tight, yet flexible, integration of MR with complex robotics
systems for development and test [23–26]. The flexibility of
MR technology enables gradual integration of virtual and real
components with robotic systems at lower risks of physical
damages as pointed out in [27].

We can further exploit MR technology as a tool to collect
data and test autonomous multi-robot systems with realistic
human behaviors. A recent study [28] emphasized the impor-
tance of VR in the development of safety in autonomous vehi-
cles. A specific implementation presented in [29] used a MR-
based framework for verifying and validating an autonomous
vehicle’s performance in the presence of pedestrians. The idea
was to create a virtual environment shared between the vehicle
and human pedestrian. This way, the testbed provided a way to
test algorithms under real human behavior. While appreciating
the previous studies discussing and revealing the value of
MR-based testbeds, we contribute a systematic view of MR-
based robotics testbed for broader applications and share our
implementation as guidelines.

III. MR FOR RS WITH REALISM

The goal of this section is to identify pros and cons of
potential scenarios of MR implementations as a testbed for

1VR:Virtual Reality, AR: Augmented Reality

RS to be deployed in the real world. In a MR environment,
there are virtual and real entities that interact with each other,
spatially mapped from physical to virtual or vice-a-versa.
Varied ways to implement MR interfaces allow different levels
of virtuality or reality as depicted in Fig. 1. We categorized
six levels of virtuality/reality based on entities. The following
paragraphs are organized to briefly define entities and the six
configurations and then detail the features of each configura-
tion, which are summarized in relative scales in Table I.

A. Entities and Configuration

There are three main entities—robots, humans, and the
environment (Table I, col. 2-col. 4), and each can be either
virtual or real. Virtual robots are widely used for software-
in-the-loop (SITL) testing. Their sensor data is calculated
using sensor models, and command output is used to simulate
actuators. Real robots are physically present in the world, and
can be tested alongside virtual entities using a hardware-in-
the-loop (HITL) approach. Humans can interface with the
system in several ways. Virtual humans mean programmed
human characters. Real humans can be immersed in the virtual
scene using Console, VR, and AR interfaces, or physically
present in the real world. We define the environment to include
anything except robots and characters (e.g., buildings, ground,
etc.). Based on the combination of virtualization levels of the
three entities, we may consider (a) fully simulated, (b)-(d) MR
with virtual robots, (e) MR with real robots, and (f) fully real
configurations.

B. Features

Now let us look into the ‘feature’ dimension of the con-
figurations. Column 5 to 14 of Table I are the key aspects to
consider in developing MR testbeds. The markings indicate
how strong the features are for each configuration relative
to others. An empty cell means the feature (column) is not
available for the configuration (row).

Safety, Realism, and Cost: The first four items (Table I,
col. 5 to 8) are related to humans. The foremost concern when
deploying or testing robots near humans is safety (col. 5).
Robots can physically harm people only when they share the
same environment as in (f). We consider this as the final
deployment, rather than a developmental, stage.

The second feature (col. 6), transfer [30], occurs when a
human behaves in the virtual world as she/he would in the real
world. Among the MR interfaces, a joystick usually provides
the lowest level of transfer, and VR and AR modalities are
capable of a better transfer. Photo-realism, higher frame rates,
or audio effects may affect transfer as well. If the goal of a
study is to extrapolate human behavior in the virtual world to
the real world then a high level of transfer is important.

Column 7 and 8 are closely related to transfer. When
attempting to leverage body motion in algorithms, many VR
systems can be used to track limbs and the head. When
accompanied by full body motion capture, AR systems can
provide similar or better resolution. Many game engines
enable character animation systems which can be leveraged by
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(a) Virt Simulated Virt x $ xx x xxx xx
(b) Virt Console-

based
Virt x x x $ x x xx x

(c) Virt VR-based Virt x xx x x $$ x x x x
(d) Virt AR-based Virt+Real x xxx xx x $$$ x x x x x
(e) Real Simulated,

console,
AR, VR

Virt+Real x xxx xx x $$$$ xx x

(f) Real Real Real xxxx xxx xx $$$ xxx

TABLE I: Various configurations (column 1) correspond to Fig. 1. More marks indicate relative importance for that configuration. For
example, configuration (e) with real robots and AR/VR hardware would typically cost more than a configuration (a) simulation-only setup.

console and simulated humans. Non-visual sensory modalities
are hard to experience in the virtual environment (e.g. haptic
or olfactory sense). Sound/voice can be captured and played
in a limited scope with a microphone and headsets. While
realistic sounds is hard to be provided with virtual entities (e.g.
sound of flying drones), human voice can be easily obtained
for console systems, VR, and AR systems (col. 8).

Overall, as real components increase (going from (a) to (f)),
realism improves in terms of transfer and fidelity. Improved re-
alism, however, comes with added cost and expert knowledge
(col. 9). Depending on the development phase or the purpose
of study, we may benefit from a proper choice of mixed-
reality setting. For example, console interfaces, consisting of
just a laptop, joystick, and headset are relatively inexpensive
and easily deployable, compared with an AR system. Thus, it
will be possible to recruit more human players with the same
budget, yet at the cost of transfer quality.

Quantity and Quality of Data: The following four items
(col. 10 to 13) are related to data we collect from the system.

The completely virtual approach of configuration (a) affords
significant experimental repeatability (col. 10). This is very
common and useful way to obtain a massive dataset for
training as well as to test low-level algorithms especially
in the initial stages of development. Data collection can be
conducted faster than real time, possibly in parallel, without
any spatial restriction (col. 12). This is often important when
trying to assemble large datasets. In configurations (b)-(d)
where the virtual characters are controlled by human players,
the data collection process will not be faster than real time nor
parallelizable. They also present logistic challenges (recruiting,
facility management, Internal Review Board approvals, etc.)
that slow the process. Nevertheless, data with human inputs
are valuable and there are three ways to use it: First, the data
can be added to the dataset for training or development. The
data size would be small, yet this may be useful for refinement
or meta-learning [31]. Second, the recorded human inputs may
be used to improve the programmed human characters for
configuration (a). Third, the data can be used for evaluation of

the algorithm. As we envision continued learning problems of
a longer term, all the usages of human data are meaningful.

Perception fidelity (col. 11) refers to how closely the module
imitates or amplifies reality. Although synthesized sensor data
is limited, depending on the fidelity of the simulator, it is
possible to yield a high level of robot perception fidelity. If
a high-fidelity simulator is employed, perception algorithms
used in the real world can be used in simulation, and vice-a-
versa [32, 33]. In configuration (e), a HITL configuration, uses
real robot hardware infused with synthetic sensor data. This
sensor data might be a real video feed overlaid with virtual
entities (i.e., AR for the robot) or it might use completely
synthetic sensor data.

One of the advantages with the virtual entities is ubiquitous
ground truth information (col. 13). This information is useful
while development as well as for quantitative evaluation of
algorithms. Recorded human inputs via MR interfaces may
contain measurements/observations that mismatches with the
player’s true intended behavior. Therefore, it is important to
collect any report or feedback from human players together
with data from devices.

Technical Consideration: Besides limitations of MR in-
terfaces as UI, a technical consideration for the MR testbed
where virtual and real entities are combined is that all entities
must spatially align (col. 14). Photogrammetric reconstructions
[34, 35] enable us to maintain alignment from the real envi-
ronments to simulated virtual worlds. A low quality alignment
may degrade the user experience of human players or alter
robots’ behavior in an unexpected way.

IV. SYSTEM IMPLEMENTATION

We have implemented a MR-based RS testbed supporting
configurations (a)-(d) presented in the previous section.2 In this
section, details of our system implementation are reported as
a concrete successful example.

2The system can be extended to support (e) and (f) with real robots, but
the current scope includes (a)-(d).
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Fig. 2: The system architecture includes ROS (green) and Unity
(blue) elements. We performed experiments up to ten robot clients,
five console clients, four VR clients, and two AR clients. We also
include several non-player characters (NPCs), thus mixing configu-
rations (a)-(d) in Fig. 1 and Table I

Our system uses the Unity game engine [36] as our virtual
environment. We make use of Unity’s plug-in capability to add
custom C# components that enable connections to a ROS [37]
environment (Fig. 2). We use a mix of Windows and Linux
machines, relying on ROS# [38] and rosbridge [39] to provide
Unity-to-JSON and JSON-to-ROS, respectively, connections.
The adoption of Unity with ROS is found in other VR HRI
studies such as [40, 41]

Our architecture consists of a central Game Server and
multiple clients connected to the server (Fig. 2). The game
clients include robot clients, and Console/AR/VR clients.
Additionally, we also implemented a special type of client
that is not associated with an entity, but affords a third party
the opportunity to move around the environment. We have
virtual environments derived from photogrammetric recon-
structions of parts of SRI’s Princeton campus (spanning over
180×120m2) and parts of Muscatatuck Urban Training Center,
IN [34, 35].

A. Game Server

The Game Server is responsible for maintaining the game
state, game time, and scenario/terrain loading. Our game code
follows the standard model from Unity’s First-Person Shooter
(FPS) Sample [42]. We added several key features: (1) The
Game Server publishes a single ground truth message at
10Hz that includes: 3D pose and twist of all characters and
robots, skeletal pose and activity information of all characters,
camera images as well as camera parameters, and more.
(2) Autonomous non-player characters (NPCs) are controlled
by behavior trees, allowing us to scale up the number of
characters in our scene. (3) ROS replay capabilities allow us
to examine the experiments afterwards. Also, captured body
motions from the AR and VR players can be replayed on
the NPCs. This replay capability gives us another way to add
motion realism. (4) We add the ability to play prerecorded
audio announcements from the robots and to communicate
between human players. Incorporating the Dissonance VoIP
package to emulate a half-duplex, hand-held radio network,
users can select a radio channel and speak to each other.

Fig. 3: The Real/Virtual Environment: actual site (left) and its virtual
replica (right) as a mesh model obtained after a prior mapping
process.
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Fig. 4: Equipment and network connections for console (left), VR
(middle), and AR (right).

B. Robot clients

Each robot subscribes to a ROS RobotCmd message
through the rosbridge into JSON, and then into a C# class.
The RobotCmd allows the publisher to control the robots.
As our application was not focused on developing navigation,
localization, or obstacle avoidance algorithms, we leveraged
Unity’s built-in NavMesh navigation system [43] to handle all
three issues.

Each robot publishes a RobotState message, which
includes its pose, twist, camera information, image stream
(640x480, 10Hz), audio stream, and ground truth bounding
boxes of all characters. We also perform a single ray cast
between the center of each character and the camera to ensure
that they are not entirely occluded. We use this ground truth
to quantify our tracker’s performance (see § V).

C. Console clients

The console-based interfaces (Fig. 4, left) include a gaming
laptop running Windows 10, Xbox controller [44], and a
headset. Using the controller, the player can walk, run, take
a single-knee crouch, pickup/deposit an object, and talk on
either of two radio channels. Full body motion (walking, run-
ning, crouching) was provided by Unity’s Mecanim animation
system. We were also able to use console interfaces over
the Internet to continue testing remotely during COVID-19
closures. While being located in California, Denver, and New
Jersey, the players experienced no noticeable lag.

D. VR clients

As suggested in Fig. 4, middle, VR players wear an MSI
VR One [45] computational backpack running Windows 10
and a VIVE Pro HMD [46]. They hold a VIVE controller in
each hand, and trackers are mounted on the front waist and
left and right feet. The position and orientation of the player’s
head, hands, waist and feet are used as inverse kinematics (IK)



Fig. 5: Experiment with human players (five console players and two
VR players are seen in the figure.)

Fig. 6: Human players in the virtual environment captured from
virtual UAVs. Each player is playing his/her role (left). Note that the
character on the right (male, blue shirt) is in a natural pose, being
controlled by a VR interface.

targets, which the IK system (FinalIK [47]) uses to solve the
pose of the virtual character’s skeleton. The players can freely
walk around a 3.5m x 3.5m play area. To address the physical
tracking space limit, typical joystick based locomotion is
mapped to one of the VIVE controller touchpads.

E. AR clients

The AR interfaces (Fig. 4, right) are also wearable devices
including a MSI VR One backpack for computing and a
Rokoko Smartsuit [48] for full-body motion capture. The AR
headset is a custom system consisting of a Trivisio HMD
[49] paired with a physically mounted Intel Realsense D435
that provides video see-through capabilities. Video frames and
IMU data from the D435 are fused with GPS via visual odom-
etry [50] to provide head and position and orientation. While
aligning the real/virtual worlds, we found that some locations
in our 3D models had ground height errors which would cause
the AR characters to “float” above the ground. To compensate,
we clamp the character’s feet to the virtual world’s ground and
adjust the height of the head pose accordingly.

V. DEMONSTRATION: MULTI-ROBOT MULTI-PERSON
TRACKING

In the previous sections, we reviewed how using MR
benefits RS (§III) in general and how our MR testbed is
implemented (§IV). Now, we present our demonstration of the
system for a specific application, Multi-Robot Multi-Person
Tracking. Note that this section is to showcase a specific
example of the utility of the MR testbed. The application
is still under development and our algorithms for planning,
perception, and tracking are not the main contributions.

Let us briefly describe the problem of multi-robot multi-
target tracking we consider. We assume several UAVs and sev-
eral UGVs with perfect communication operate in a bounded,
structured environment. The number of robots are smaller than
the number of targets, and the numbers are fixed during an
experiment. The robots move under a centralized planner to

Fig. 7: Unity presented our tracker with challenging viewing condi-
tions including (from left to right) saturated images, pitched camera
angles, low resolution, and partially occluded people.

Fig. 8: Sample tracking results from different views. The same play-
ers a tracked from different perspectives. “CO” and “VR” indicate a
console and VR player, respectively.

survey the people equally and as much as possible. They
actively search for and follow people by load balancing and
switching people. The robot tasks also include monitoring
target tracks and activities. Our tracking application has sev-
eral requirements: (1) human safety, (2) short-term activity
recognition which require full-body motion, (3) stressing our
algorithms and system by varying the numbers of robots (10+)
and people (40+) over an area larger than can be covered
by static robots, and (4) collect data with real people for
refinement and evaluation of the algorithms.

Our experiments include a combination of console-based,
VR-based, and AR-based users. Thus there is no safety con-
cern due to operating live robots near people. The IRB for
this study was reviewed by Office of Integrity at SRI and
approved by the Office of Research Protections at U.S Army
Medical Research and Development Command. The shared
environment used for the demonstration is shown in Fig. 3.
The NPCs were programmed to randomly wander or travel
among waypoints at random speeds.

A. Visual Tracking

We use the YOLO3 [51] to provide detection bounding
boxes; we found the algorithm to perform reasonably well on
the Unity-rendered characters (see Fig. 7). The bounding boxes
update a short-term tracker, using the Hungarian algorithm
for data association. A Kalman filter is used to filter the
tracks with a constant velocity prediction. These short term
“tracklets” can handle short tracking gaps.

If tracking gaps are sufficiently long, then a constant veloc-
ity assumption and geometry are insufficient to re-associate
tracklets and reacquire people. Thus, we use visual features
computed from multiple frames of each tracklet using a deep
neural network. The normalized inner products of the feature
vectors is used to assess the similarity of the people. The
neural network has a Resnet50 [52] design with an output



of 2,000 features (this is then used as the re-acquisition
feature vector). Using the ground truth positions and labels
of all people in the scene, we evaluated our algorithm. On 40
minutes of data, the algorithm assigned the correct label to 13
people 93% of the time (see Fig. 8 for two example frames).

B. Activity Recognition

Our tracking application also classifies people’s short-term
activities, including walking, running, turning, standing, sit-
ting, throwing, holding objects, putting on a backpack, lifting
objects, and kneeling. To ease the training data requirements,
we use a skeleton-based activity recognition, Openpose [53],
to extract a low-dimensional description (the location of joints,
hands, feet, eyes, ears and nose) of each person. Activities are
inferred from time histories skeletons. Activity classification
is performed by a modified version of Spatio-Temporal Graph
Convolution Neural Network (ST-GCN) [54], a deep but
relatively compact neural network for activity recognition.

Although some activities were available from HMDB [55],
public datasets for the holding binoculars, backpack, lifting,
and kneeling activities were unavailable. Instead, we used the
AR and full-body recording capabilities to collect additional
data. We had 6 participants perform 4 repetitions of each
activity and record the skeletons in ROS. We then expanded
this small dataset by generating training images by randomly
selecting a virtual location, a camera angle/position, and a
character avatar, and we replayed our captured body motions.
The final classification accuracy was comparable to the origi-
nal HMDB activities, between 76%-94%. Because our network
is trained only on skeletons, which use the same real and
virtual representation, we expect this method to transfer to
the real world.

C. Statistics of Human Behavior

Leveraging human data from our experiments, we were able
to fine-tune algorithms of tracking, searching, and following
tasks. For example, Fig. 9 shows the ground truth distribution
of how far people travelled from their current position after
10 and 20 seconds during the experiment. This implies that
the last-known position is still the most likely location to find
a person in a short term. Based on this, when a new person is
assigned to a robot and the person’s location is unknown, it
uses the person’s last known position as a starting point and
begins to radially search outward until they are found or a
timeout occurs.

In another experiment, we performed a simple system test
involving interactions between robots and humans. Specif-
ically, random players were provided direction to a new
location by the audio announcement from the robot. In this
test, some players had been assigned a focused task (e.g.,
keeping a point of interest under surveillance), while others
were given more general direction (e.g., plow the field). The
players were not instructed how to respond to the robot’s
requests. Fig. 10 shows the statistics of how the two groups
reacted: the tasked players were more likely to ignore the
request while the general players were more likely to follow.

Fig. 9: Distribution of ground truth distance travelled from last-known
position. Distance informs tracker, search, and follow algorithm
tuning. This data was collected from real people interacting with
the system via console, VR, and AR interfaces.
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Fig. 10: Players with focused, specific tasks were more likely to
ignore the robot’s request to move from the area, than players with
more general assignments.

VI. DISCUSSION

We have presented an approach toward safe yet realistic
MR-based testbed for robotic Systems with human interac-
tions. We have identified six configurations and provided a
summary of their features and requirements, which may serve
as a concise guideline for readers to choose and develop
their MR testbed. We have also reported our MR-based RS
testbed system architecture in detail, and our experimental
demonstration of the system for a multi-robot multi-person
tracking and monitoring application.

While developing our system, we also have seen limiting
aspects of the MR technology especially regarding the user’s
experience within the virtual environment. For example, some
users kept adjusting the wearable interfaces resulting in un-
wanted gestures. Some users of VR systems do experience
motion sickness. Any study which uses VR/AR HMDs would
need to be prepared to recognize the symptoms and accom-
modate users with motion sickness or fatigue. Another point
of concern is that the VR systems and our custom AR system
are not easy to sanitize to be shared among multiple users.

Our study was driven by a safety requirement and a need
to have real humans interact with the system: MR offered the
best of both worlds. We believe that MR testbeds will be-
come increasingly common given a need for close interaction
between robots and humans, increasing levels of autonomy,
increasing demands for data with human inputs, and less
expensive VR/AR hardware.
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